CVPR 2024 | 文本一键转3D数字人骨骼动画,阿尔伯塔大学提出MoMask框架
CVPR 2024 | 文本一键转3D数字人骨骼动画,阿尔伯塔大学提出MoMask框架想象一下,你仅需要输入一段简单的文本描述,就可以生成对应的 3D 数字人动画的骨骼动作。而以往,这通常需要昂贵的动作捕捉设备或是专业的动画师逐帧绘制。这些骨骼动作可以进一步的用于游戏开发,影视制作,或者虚拟现实应用。来自阿尔伯塔大学的研究团队提出的新一代 Text2Motion 框架,MoMask,正在让这一切变得可能。
想象一下,你仅需要输入一段简单的文本描述,就可以生成对应的 3D 数字人动画的骨骼动作。而以往,这通常需要昂贵的动作捕捉设备或是专业的动画师逐帧绘制。这些骨骼动作可以进一步的用于游戏开发,影视制作,或者虚拟现实应用。来自阿尔伯塔大学的研究团队提出的新一代 Text2Motion 框架,MoMask,正在让这一切变得可能。
抛弃传统方法,只采用Transformer来解码真实场景!
在人物说话的过程中,每一个细微的动作和表情都可以表达情感,都能向观众传达出无声的信息,也是影响生成结果真实性的关键因素。
虽然大型语言模型(LLM)在各种常见的自然语言处理任务中展现出了优异的性能,但随之而来的幻觉,也揭示了模型在真实性和透明度上仍然存在问题。
在人物说话的过程中,每一个细微的动作和表情都可以表达情感,都能向观众传达出无声的信息,也是影响生成结果真实性的关键因素。
拖动式图像编辑是一种新型的、用户交互式的图像编辑方法。
来自香港科技大学,清华大学的研究者提出了「GenN2N」,一个统一的生成式 NeRF-to-NeRF 转换框架,适用于各种 NeRF 转换任务,例如文字驱动的 NeRF 编辑、着色、超分辨率、修复等,性能均表现极其出色!
以神经网络为基础的深度学习技术已经在诸多应用领域取得了有效成果
风格化图像生成,也常称为风格迁移,其目标是生成与参考图像风格一致的图像。
近,来自澳大利亚蒙纳士大学、蚂蚁集团、IBM 研究院等机构的研究人员探索了模型重编程 (model reprogramming) 在大语言模型 (LLMs) 上应用,并提出了一个全新的视角