
SQL 开发者们,终于有了自己的“Cursor”
SQL 开发者们,终于有了自己的“Cursor”四个月前,我们采访了 Chat2DB 创始人姬朋飞,文章里讲述了他从大厂离职后的创业历程。而最近 Cha2DB 针对 SQL 开发者的普遍痛点,发布了全新的 3.0 版本。
四个月前,我们采访了 Chat2DB 创始人姬朋飞,文章里讲述了他从大厂离职后的创业历程。而最近 Cha2DB 针对 SQL 开发者的普遍痛点,发布了全新的 3.0 版本。
Anthropic 昨晚发布了他们最新的 Claude 3.7 Sonnet 混合推理模型,并在官网同步更新了 Claude 3.7 的系统提示词。
都说通用大模型轻松拿捏翻译,结果有人来掀桌了。
在实际应用过程中,闭源模型(GPT-4o)等在回复的全面性、完备性、美观性等方面展示出了不俗的表现。
Sakana AI刚刚官宣,第二代「AI科学家」独立完成论文,通过了ICLR 2025 Workshop的同行评审。这是首次完全由AI端到端生成的科学论文,获得了学术高度认可。
近日,北京大学智能学院袁晓如课题组在中国古籍内容的智能探索方面开展跨学科合作探索取得重要进展。研究通过智能自动分类机制,从大量中国古籍中提取可视化图像,建立大规模中国古代可视化集合
DiffRhythm是一款新型AI音乐生成模型,能在10秒内生成长达4分45秒的完整歌曲,包含人声和伴奏。它采用简单高效的全diffusion架构,仅需歌词和风格提示即可创作,还支持本地部署,最低只需8G显存。
揭秘如何在 20 分钟内用 AI 创建专业级界面,并分享前四大核心技巧,让你的 AI 生成的应用脱胎换骨。
大模型时代,读论文这事儿真是越来越爽了~
2025 年 2 月发布的 NoLiMA 是一种大语言模型(LLM)长文本理解能力评估方法。不同于传统“大海捞针”(Needle-in-a-Haystack, NIAH)测试依赖关键词匹配的做法,它最大的特点是 通过精心设计问题和关键信息,迫使模型进行深层语义理解和推理,才能从长文本中找到答案。
这才 2 月份,深度搜索(Deep Search)就已经隐隐成为 2025 年的新搜索标准了。像谷歌和 OpenAI 这样的巨头,纷纷亮出自己的“Deep Research”产品,努力抢占这波技术浪潮的先机。(我们也很自豪,在同一天也发布了开源的node-deepresearch)。
在 ChatGPT 爆火两年多的时间里,大语言模型的上下文窗口长度基准线被拉升,以此为基础所构建的长 CoT 推理、多 Agent 协作等类型的高级应用也逐渐增多。
OctoTools通过标准化工具卡和规划器,帮助LLMs高效完成复杂任务,无需额外训练。在16个任务中表现优异,比其他方法平均准确率高出9.3%,尤其在多步推理和工具使用方面优势明显。
为了解决视频编辑模型缺乏训练数据的问题,本文作者(来自香港中文大学、香港理工大学、清华大学等高校和云天励飞)提出了一个名为 Señorita-2M 的数据集。该数据集包含 200 万高质量的视频编辑对,囊括了 18 种视频编辑任务。
Manus 爆火出圈,引发 Agent 热潮!从自行理解任务、拆解步骤到选择工具并执行,这需要 Agent 具备强大的复杂工作流编排和任务处理能力,而工作流也是智能体的核心技术之一。
大语言模型长序列文本生成效率新突破——生成10万Token的文本,传统自回归模型需要近5个小时,现在仅需90分钟!
只要微调模型生成的前8-32个词,就能让大模型推理能力达到和传统监督训练一样的水平?
现如今机器人又是跑步又是后空翻,但到底什么时候能做上家务给人类养养老?
前几天,看到好基友歸藏在X上发了一个帖子:
如今的前沿推理模型,学会出来的作弊手段可谓五花八门,比如放弃认真写代码,开始费劲心思钻系统漏洞!为此,OpenAI研究者开启了「CoT监控」大法,让它的小伎俩被其他模型戳穿。然而可怕的是,这个方法虽好,却让模型变得更狡猾了……
在32道高等数学测试中,LLM表现出色,平均能得分90.4(按百分制计算)。GPT-4o和Mistral AI更是几乎没错!向量计算、几何分析、积分计算、优化问题等,高等AI模型轻松拿捏。研究发现,再提示(Re-Prompting)对提升准确率至关重要。
斯坦福李飞飞团队在「保姆型」机器人上新突破!提出BRS综合框架,以后机器人执行日常家务更自主、更可靠。
o3-mini成功挑战图论中专家级证明,还得到了陶哲轩盛赞。经过实测后,他总结称LLM并非是数学研究万能解法,其价值取决于问题得性质和调教AI的方式。
首次将DeepSeek同款RLVR应用于全模态LLM,含视频的那种!
从随机残基分布开始,逐步生成新的蛋白质结构
挑战多图数学推理新基准,大模型直接全军覆没?!
没有任何冷启动数据,7B 参数模型能单纯通过强化学习学会玩数独吗?
武汉大学等发布了一篇大型视觉语言模型(LVLMs)安全性的综述论文,提出了一个系统性的安全分类框架,涵盖攻击、防御和评估,并对最新模型DeepSeek Janus-Pro进行了安全性测试,发现其在安全性上存在明显短板。
为什么必须像评估劳动力一样评估LLM代理,而不仅仅是评估软件。
本文介绍了一项突破性的AI推理技术创新——思维草图(SoT)框架。该框架从人类认知过程中获取灵感,通过一个200M大小的路由模型将LLM引导到概念链、分块符号化和专家词汇三种推理范式,巧妙地解决了大语言模型推理过程中的效率瓶颈。