
成本暴降88%!通义实验室、北大发布ZeroSearch,无需搜索即可激活LLM检索能力
成本暴降88%!通义实验室、北大发布ZeroSearch,无需搜索即可激活LLM检索能力信息检索能力对提升大语言模型 (LLMs) 的推理表现至关重要,近期研究尝试引入强化学习 (RL) 框架激活 LLMs 主动搜集信息的能力,但现有方法在训练过程中面临两大核心挑战:
信息检索能力对提升大语言模型 (LLMs) 的推理表现至关重要,近期研究尝试引入强化学习 (RL) 框架激活 LLMs 主动搜集信息的能力,但现有方法在训练过程中面临两大核心挑战:
来自中国人民大学高瓴人工智能学院与值得买科技 AI 团队在 CVPR 2025 会议上发表了一项新工作,首次提出了一种从静态图像直接生成同步音视频内容的生成框架。其核心设计 JointDiT(Joint Diffusion Transformer)框架实现了图像 → 动态视频 + 声音的高质量联合生成。
MetaMind是一个多智能体框架,专门解决大语言模型在社交认知方面的根本缺陷。传统的 LLM 常常难以应对现实世界中人际沟通中固有的模糊性和间接性,无法理解未说出口的意图、隐含的情绪或文化敏感线索。MetaMind首次使LLMs在关键心理理论(ToM)任务上达到人类水平表现。
来自华盛顿大学、AI2、UC伯克利研究团队证实,「伪奖励」(Spurious Rewards)也能带来LLM推理能力提升的惊喜。
又是一个让程序员狂欢的研究!来自 OpenHands、耶鲁、南加大和斯坦福的研究团队刚刚发布了 LocAgent—— 一个专门用于代码定位的图索引 LLM Agent 框架,直接把代码定位准确率拉到了 92.7% 的新高度。该研究已被 ACL 2025 录用。
过度依赖CoT思维链推理会降低模型性能,有新解了! 来自字节、复旦大学的研究人员提出自适应推理框架CAR,能根据模型困惑度动态选择短回答或详细的长文本推理,最终实现了准确性与效率的最佳平衡。
你有没有遇到过这样的算力困境:买了 GPU,用不了几次就闲置烧钱,偶尔想用的时候却一卡难求?
1+1等于几?
在日益强调“思维能力”的大语言模型时代,如何让模型在“难”的问题上展开推理,而不是无差别地“想个不停”,成为当前智能推理研究的重要课题。
您是否遇到过这样的困扰:明明搭建了完善的RAG系统,但Agent总是回答过时的信息,或者面对历史偏好变化时一脸茫然?
既能提升模型能力,又不显著增加内存和时间成本,LLM第三种Scaling Law被提出了。
最顶尖的AI模型,做起奥数题来已经和人类相当,那做物理题水平如何呢?港大等机构的研究发现:即使GPT-4o、Claude 3.7 Sonnet这样的最强模型,做物理题也翻车了,准确率直接被人类专家碾压!
仅需一个强化学习(RL)框架,就能实现视觉任务大统一?
基于开源模型继续在下游任务上使用私有下游数据进行微调,得到在下游任务表现更好的专有模型,已经成为了一类标准范式。
表现最好的GPT-o4 mini,物理推理能力也远不及人类!
上下文长度达 13 万 token,适用于多段文档综合分析、金融、法律、科研等复杂领域任务。
Meta推出KernelLLM,这个基于Llama 3.1微调的8B模型,竟能将PyTorch代码自动转换为高效Triton GPU内核。实测数据显示,它的单次推理性能超越GPT-4o和DeepSeek V3,多次生成时得分飙升。
强化学习 (RL) 显著提升了视觉-语言模型 (VLM) 的推理能力。然而,RL 在推理任务之外的应用,尤其是在目标检测 和目标定位等感知密集型任务中的应用,仍有待深入探索。
推理大模型开卷新方向,阿里开源长文本深度思考模型QwenLong-L1,登上HuggingFace今日热门论文第二。
在大型推理模型(例如 OpenAI-o3)中,一个关键的发展趋势是让模型具备原生的智能体能力。具体来说,就是让模型能够调用外部工具(如网页浏览器)进行搜索,或编写/执行代码以操控图像,从而实现「图像中的思考」。
首个用于加速扩散式大语言模型(diffusion-based Large Language Models, 简称 dLLMs)推理过程的免训练方法。
随着大语言模型(LLM)能力的快速迭代,传统评估方法已难以满足需求。如何科学评估 LLM 的「心智」特征,例如价值观、性格和社交智能?如何建立更全面、更可靠的 AI 评估体系?北京大学宋国杰教授团队最新综述论文(共 63 页,包含 500 篇引文),首次尝试系统性梳理答案。
刚刚,全新AI基准测试工具xbench诞生,通过双轨评估体系和长青评估机制,追踪模型能力与实际场景价值。
AI居然不听指令,阻止人类把自己给关机了???
大家好,我是袋鼠帝 今天给大家带来的是一个带WebUI,无需代码的超简单的本地大模型微调方案(界面操作),实测微调之后的效果也是非常不错。
近年来,思维链在大模型训练和推理中愈发重要。近日,西湖大学 MAPLE 实验室齐国君教授团队首次提出扩散式「发散思维链」—— 一种面向扩散语言模型的新型大模型推理范式。该方法将反向扩散过程中的每一步中间结果都看作大模型的一个「思考」步骤,然后利用基于结果的强化学习去优化整个生成轨迹,最大化模型最终答案的正确率。
TL;DR:如果您有一个AI产品,用户问您这是AI Agent还是Agentic AI?如果您回答不出来,或者认为这两个概念是一回事,那您可能需要重新审视自己的技术认知了。不过没关系,因为99%的人都不知道,现在您只需要看完这篇文章就可以了。
AI无处不在——从聊天机器人、推荐引擎到语音助手和ChatGPT或谷歌Gemini等工具。但在所有这些智能技术的背后,有一样东西经常被忽视:使这一切成为可能的硬件。
当你在搜索“中国队在多哈乒乓球锦标赛的成绩”时,一篇新闻报道的文本部分和你的查询的相关性是 0.7,配图的相关性 0.5;另一篇则是文本相关性为 0.6,图片也是 0.6。那么,哪一篇报道才是你真正想要的呢?
随着基础模型的快速发展和 AI Agent 进入规模化应用阶段,被广泛使用的基准测试(Benchmark)却面临一个日益尖锐的问题:想要真实地反映 AI 的客观能力正变得越来越困难。