
SSM+扩散模型,竟造出一种全新的「视频世界模型」
SSM+扩散模型,竟造出一种全新的「视频世界模型」当状态空间模型遇上扩散模型,对世界模型意味着什么?
当状态空间模型遇上扩散模型,对世界模型意味着什么?
为提升大模型“推理+搜索”能力,阿里通义实验室出手了。
孙子兵法有云:“故其疾如风,其徐如林”,意指在行进迅速时,如狂风飞旋;而在行进从容时,如森林徐徐展开。
「知其然,亦知其所以然。」
OpenAI的o3推理模型席卷AI界,算力暴增10倍,能力突飞猛进!但专家警告:最多一年,推理模型可能一年内撞上算力资源极限。OpenAI还能否带来惊喜?
近年来,语言模型技术迅速发展,然而代表性成果如Gemini 2.5Pro和GPT-4.1,逐渐被谷歌、OpenAI等科技巨头所垄断。
在今年 ICLR 会议上,我们被问到最多且最有意思的问题是:像 Jina AI 这样的向量搜索模型提供商,除了在 MTEB 上做基准测试,会不会做些氛围测试 (Vibe-testing)?
好家伙,AI意外生成的内核(kernel),性能比人类专家专门优化过的还要好!
GPT-4o-Image也只能完成28.9%的任务,图像编辑评测新基准来了!360个全部由人类专家仔细思考并校对的高质量测试案例,暴露多模态模型在结合推理能力进行图像编辑时的短板。
现在,请大家一起数一下“1”、“2”。OK,短短2秒钟时间,一个准万亿MoE大模型就已经吃透如何解一道高等数学大题了!而且啊,这个大模型还是不用GPU来训练,全流程都是大写的“国产”的那种。
多模态大模型(MLLM)在静态图像上已经展现出卓越的 OCR 能力,能准确识别和理解图像中的文字内容。MME-VideoOCR 致力于系统评估并推动MLLM在视频OCR中的感知、理解和推理能力。
来和机器狗一起运动不?你的羽毛球搭子来了!无需人工协助,仅靠强化学习,机器狗子就学会了羽毛球哐哐对打。基于强化学习,研究人员开发了机器狗的全身视觉运动控制策略,同步控制腿部(18个自由度)移动,和手臂挥拍动作。
多AI智能体系统的复杂构建与优化,长期以来是用智能体解决科研问题和场景落地的瓶颈。来自英国格拉斯哥大学的研究团队发布了全球首个AI智能体自进化开源框架EvoAgentX,通过引入自我进化机制,打破了传统多智能体系统在构建和优化中的限制!
人类在面对简单提问时常常不假思索直接回答,只有遇到复杂难题才会认真推理。
上海交通大学联合中科大在本文中指出:现阶段大模型智能体的主要障碍不在于模型能力不足,而在于其「Agentic ROI」尚未达到实用化门槛。研究团队提出 Agentic ROI(Agentic Return on Investment)这一核心指标,用于衡量一个大模型智能体在真实使用场景中所带来的「信息收益」与其「使用成本」之间的比值:
在人类的认知过程中,视觉思维(Visual Thinking)扮演着不可替代的核心角色,这一现象贯穿于各个专业领域和日常生活的方方面面。
斯坦福Hazy实验室推出新一代低延迟推理引擎「Megakernel」,将Llama-1B模型前向传播完整融合进单一GPU内核,实现推理时间低于1毫秒。在B200上每次推理仅需680微秒,比vLLM快3.5倍。
近日,NVIDIA 联合香港大学、MIT 等机构重磅推出 Fast-dLLM,以无需训练的即插即用加速方案,实现了推理速度的突破!通过创新的技术组合,在不依赖重新训练模型的前提下,该工作为扩散模型的推理加速带来了突破性进展。本文将结合具体技术细节与实验数据,解析其核心优势。
主席在《矛盾论》中强调"具体问题具体分析,是Marxism的活的灵魂"。而在AI领域,我们终于有了一个能够践行这一哲学思想的技术框架——MAS-ZERO,帮我们构建能够因地制宜、因时制宜的智能系统。
来自上海人工智能实验室团队的最新成果 Linear-MoE,首次系统性地实现了线性序列建模与 MoE 的高效结合,并开源了完整的技术框架,包括 Modeling 和 Training 两大部分,并支持层间混合架构。为下一代基础模型架构的研发提供了有价值的工具和经验。
又有一个 AI Scientist 的论文通过了顶会同行评审。
EfficientLLM项目聚焦LLM效率,提出三轴分类法和六大指标,实验包揽全架构、多模态、微调技术,可为研究人员提供效率与性能平衡的参考。
Pangu Ultra MoE 是一个全流程在昇腾 NPU 上训练的准万亿 MoE 模型,此前发布了英文技术报告[1]。最近华为盘古团队发布了 Pangu Ultra MoE 模型架构与训练方法的中文技术报告,进一步披露了这个模型的细节。
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。
AI越来越聪明,但如果它们反应慢,效率低,也难以满足我们的需求。
全球最贵估值科技公司,AI 巨头 Palantir 如何合理定价?
你是否曾对大语言模型(LLMs)下达过明确的“长度指令”?
复刻DeepSeek-R1的长思维链推理,大模型强化学习新范式RLIF成热门话题。
即使RLVR(可验证奖励强化学习)使用错误的奖励信号,Qwen性能也能得到显著提升?
大语言模型遇上加密数据,即使是最新Qwen3也直冒冷汗!