
破解ChatGPT惊人耗电!DeepMind新算法训练提效13倍,能耗暴降10倍
破解ChatGPT惊人耗电!DeepMind新算法训练提效13倍,能耗暴降10倍ChatGPT能耗惊人,该怎么解?谷歌DeepMind新算法JEST问世,让LLM训练的迭代次数降低13倍,计算量减少10倍,或将重塑AI未来。
ChatGPT能耗惊人,该怎么解?谷歌DeepMind新算法JEST问世,让LLM训练的迭代次数降低13倍,计算量减少10倍,或将重塑AI未来。
基于 ChatGPT、LLAMA、Vicuna [1, 2, 3] 等大语言模型(Large Language Models,LLMs)的强大理解、生成和推理能力
想象一下你在刷短视频,系统想要推荐你可能会喜欢的内容。
只要10k数据,就能让大模型的数学成绩增长5.6%。
搜索技术是计算机科学中最难的技术挑战之一,迄今只有很少一部分商业化产品可以把这个问题解决得很好。大多数商品并不需要很强的搜索,因为这和用户体验并没有直接关系。
在训练大型语言模型(LLM)时,Adam(W) 基本上已经成为了人们默认使用的优化器。
近日,来自谷歌DeepMind的研究人员,推出了专门用于评估大语言模型时间推理能力的基准测试——Test of Time(ToT),从两个独立的维度分别考察了LLM的时间理解和算术能力。
大语言模型有道德推理能力吗?不仅有,甚至可能在道德推理方面超越普通人和专家学者!最新研究发现:GPT-4o针对道德难题给出的建议比人类专家更让人信服。
荷兰拉德布德大学的研究团队通过定位大脑注意力机制,在AI「读心术」领域精确生成图像,能够依据大脑活动记录极为准确地重建猕猴所看到的内容。网友:这是人机融合的最终目标。
视频生成赛道又起新秀,而且还是二次元定制版!稳定产出电影级画面,一键文/图生成视频,即使是「手残党」也能复刻自己喜欢的动漫作品了。
大模型当上福尔摩斯,学会对视频异常进行检测了。 来自华中科技大学、百度、密歇根大学的研究团队,提出了一种可解释性的视频异常检测框架,名为Holmes-VAD。
月之暗面和清华KVCache.ai团队的最新论文,首次揭秘了Kimi背后的推理架构! 要知道Kimi是国产大模型的当红炸子鸡,火到可以说从来没缺过流量,甚至还经常出现过载。
该文章的作者团队来自于斯坦福大学,共同第一作者团队Mert Yuksekgonul,Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang
只有10亿参数的xLAM-1B在特定任务中击败了LLM霸主:OpenAI的GPT-3.5 Turbo和Anthropic的Claude-3 Haiku。上个月刚发布的苹果智能模型只有30亿参数,就连奥特曼都表示,我们正处于大模型时代的末期。那么,小语言模型(SLM)会是AI的未来吗?
开源大语言模型(LLM)百花齐放,为了让它们适应各种下游任务,微调(fine-tuning)是最广泛采用的基本方法。基于自动微分技术(auto-differentiation)的一阶优化器(SGD、Adam 等)虽然在模型微调中占据主流,然而在模型越来越大的今天,却带来越来越大的显存压力。
检索增强式生成(RAG)是一种使用检索提升语言模型的技术。
3D 生成,一直在等待它的「ChatGPT时刻」。
为了让大模型在特定任务、场景下发挥更大作用,LoRA这样能够平衡性能和算力资源的方法正在受到研究者们的青睐。
Meta的GenAI团队在最新研究中介绍了Meta 3D Gen模型:可以在不到1分钟的时间内从文本直接端到端生成3D资产。
当前大语言模型(LLM)的评估方法受到数据污染问题的影响,导致评估结果被高估,无法准确反映模型的真实能力。北京大学等提出的KIEval框架,通过知识基础的交互式评估,克服了数据污染的影响,更全面地评估了模型在知识理解和应用方面的能力。
神经网络通常由三部分组成:线性层、非线性层(激活函数)和标准化层。线性层是网络参数的主要存在位置,非线性层提升神经网络的表达能力,而标准化层(Normalization)主要用于稳定和加速神经网络训练,很少有工作研究它们的表达能力,例如,以Batch Normalization为例
多模态命名实体识别,作为构建多模态知识图谱的一项基础而关键任务,要求研究者整合多种模态信息以精准地从文本中提取命名实体。尽管以往的研究已经在不同层次上探索了多模态表示的整合方法,但在将这些多模态表示融合以提供丰富上下文信息、进而提升多模态命名实体识别的性能方面,它们仍显不足。
「微调你的模型,获得比GPT-4更好的性能」不只是说说而已,而是真的可操作。最近,一位愿意动手的ML工程师就把几个开源LLM调教成了自己想要的样子。
10万张H100卡构成的超级AI算力集群就像是现代人类文明的奇观,是人类通向AGI的钥匙。AI时代的军备竞赛已经拉开帷幕,赌注是天量的Capex支出,胜者则有机会成为AI时代的造物主。
本文研究发现大语言模型在持续预训练过程中出现目标领域性能先下降再上升的现象。
看看这个时代最伟大 AI 学者的研究脉络。
只要将注意力切块,就能让大模型解码提速20倍。
本文介绍了一篇语言模型对齐研究的论文,由瑞士、英国、和法国的三所大学的博士生和 Google DeepMind 以及 Google Research 的研究人员合作完成。
人工智能(AI)在过去十年里取得了长足进步,特别是在自然语言处理和计算机视觉领域。然而,如何提升 AI 的认知能力和推理能力,仍然是一个巨大的挑战。
看看这个时代最伟大 AI 学者的研究脉络。