
大模型权威测试被曝翻车!更偏袒GPT-4等闭源模型,连提示词都区别对待
大模型权威测试被曝翻车!更偏袒GPT-4等闭源模型,连提示词都区别对待大模型权威测试,翻车了?! HuggingFace都在用的MMLU-PRO,被扒出评测方法更偏向闭源模型,被网友直接在GitHub Issue提出质疑。
大模型权威测试,翻车了?! HuggingFace都在用的MMLU-PRO,被扒出评测方法更偏向闭源模型,被网友直接在GitHub Issue提出质疑。
一年一度谷歌学术指标公布了!Nature年年霸榜,而今年与以往不同的是,国际学术顶会的排名大幅提升,CVPR位居第二,超越Science仅次于Nature。另外,TOP 20中,共有五大顶会入选,被引最高论文与大模型时代下前沿技术,一脉相承。
近年来,人物动作生成的研究取得了显著的进展,在众多领域,如计算机视觉、计算机图形学、机器人技术以及人机交互等方面获得广泛的关注。然而,现有工作大多只关注动作本身,以场景和动作类别同时作为约束条件的研究依然处于起步阶段。
四大 VLM,竟都在盲人摸象?
近日,字节跳动大模型团队开发的成果 Depth Anything V2 ,入选苹果公司 Core ML 模型库,目前已呈现在开发者相关页面中。
大幅节省算力资源,又又又有新解了!!
随着人工智能和大型模型技术的迅猛发展,检索增强生成(Retrieval-Augmented Generation, RAG)已成为大型语言模型生成文本的一种主要范式。
释放进一步扩展 Transformer 的潜力,同时还可以保持计算效率。
神经网络拟合数据的能力受哪些因素影响?CNN一定比Transformer差吗?ReLU和SGD还有哪些神奇的作用?近日,LeCun参与的一项工作向我们展示了神经网络在实践中的灵活性。
Meta首席人工智能科学家、深度学习之父Yann LeCun又开喷了。
近期,商汤科技 - 南洋理工大学联合 AI 研究中心 S-Lab ,上海人工智能实验室,北京大学与密歇根大学联合提出 DreamGaussian4D(DG4D),通过结合空间变换的显式建模与静态 3D Gaussian Splatting(GS)技术实现高效四维内容生成。
微软的这项研究让开发者可以在单卡机器上以 10 倍的速度处理超过 1M 的输入文本。
生物神经网络有一个重要的特点是高度可塑性,这使得自然生物体具有卓越的适应性,并且这种能力会影响神经系统的突触强度和拓扑结构。
SelfGNN框架结合了图神经网络和个性化自增强学习,能够捕捉用户行为的多时间尺度模式,降低噪声影响,提升推荐系统鲁棒性。
下一代视觉模型会摒弃patch吗?Meta AI最近发表的一篇论文就质疑了视觉模型中局部关系的必要性。他们提出了PiT架构,让Transformer直接学习单个像素而不是16×16的patch,结果在多个下游任务中取得了全面超越ViT模型的性能。
来自佐治亚理工学院和英伟达的两名华人学者带队提出了名为RankRAG的微调框架,简化了原本需要多个模型的复杂的RAG流水线,用微调的方法交给同一个LLM完成,结果同时实现了模型在RAG任务上的性能提升。
超越Transformer和Mamba的新架构,刚刚诞生了。斯坦福UCSD等机构研究者提出的TTT方法,直接替代了注意力机制,语言模型方法从此或将彻底改变。
新架构,再次向Transformer发起挑战!
6月,IEEE刊登了一篇对ChatGPT代码生成任务进行系统评估的论文,数据集就是程序员们最爱的LeetCode题库。研究揭示了LLM在代码任务中出现的潜在问题和能力局限,让我们能够对模型做出进一步改进,并逐渐了解使用ChatGPT写代码的最佳姿势。
冲锋在AI辅助数学研究第一线的陶哲轩,近日又有「神总结」:ChatGPT提升的,是我们在编码、图表等次要任务上的能力;而真要搞好数学研究,基础不扎实的话,AI也是没用的。
给大模型加上第三种记忆格式,把宝贵的参数从死记硬背知识中解放出来!
批评不仅能让人进步,也能让大模型的能力提升。
现实中,机器人收据收集可以通过远程操控实现。来自UCSD、MIT的华人团队开发了一个通用框架Open-TeleVision,可以让你身临其境操作机器人,即便相隔3000英里之外。
ChatGPT能耗惊人,该怎么解?谷歌DeepMind新算法JEST问世,让LLM训练的迭代次数降低13倍,计算量减少10倍,或将重塑AI未来。
基于 ChatGPT、LLAMA、Vicuna [1, 2, 3] 等大语言模型(Large Language Models,LLMs)的强大理解、生成和推理能力
想象一下你在刷短视频,系统想要推荐你可能会喜欢的内容。
只要10k数据,就能让大模型的数学成绩增长5.6%。
搜索技术是计算机科学中最难的技术挑战之一,迄今只有很少一部分商业化产品可以把这个问题解决得很好。大多数商品并不需要很强的搜索,因为这和用户体验并没有直接关系。
在训练大型语言模型(LLM)时,Adam(W) 基本上已经成为了人们默认使用的优化器。
近日,来自谷歌DeepMind的研究人员,推出了专门用于评估大语言模型时间推理能力的基准测试——Test of Time(ToT),从两个独立的维度分别考察了LLM的时间理解和算术能力。