
对比学习滥用隐私数据!中科院等发布「多步误差最小化」方法 | ACM MM2024
对比学习滥用隐私数据!中科院等发布「多步误差最小化」方法 | ACM MM2024多模态对比学习(如CLIP)通过从互联网上抓取的数百万个图像-字幕对中学习,在零样本分类方面取得了显著进展。 然而,这种依赖带来了隐私风险,因为黑客可能会未经授权地利用图像-文本数据进行模型训练,其中可能包括个人和隐私敏感信息。
多模态对比学习(如CLIP)通过从互联网上抓取的数百万个图像-字幕对中学习,在零样本分类方面取得了显著进展。 然而,这种依赖带来了隐私风险,因为黑客可能会未经授权地利用图像-文本数据进行模型训练,其中可能包括个人和隐私敏感信息。
Agent的记忆实现和调用是提高Agent智能水平的关键。
近年来,针对单个物体的 Text-to-3D 方法取得了一系列突破性进展,但是从文本生成可控的、高质量的复杂多物体 3D 场景仍然面临巨大挑战。之前的方法在生成场景的复杂度、几何质量、纹理一致性、多物体交互关系、可控性和编辑性等方面均存在较大缺陷。
在 2024 年全球开发者大会上,苹果重磅推出了 Apple Intelligence,这是一个全新的个性化智能系统, 可以提供实用的智能服务,覆盖 iPhone、iPad 和 Mac,并深度集成在 iOS 18、iPadOS 18 和 macOS Sequoia 中。
UrbanGPT是一种创新的时空大型语言模型,它通过结合时空依赖编码器和指令微调技术,展现出在多种城市任务中卓越的泛化能力和预测精度。这项技术突破了传统模型对大量标记数据的依赖,即使在数据稀缺的情况下也能提供准确的预测,为城市管理和规划提供了强大的支持。
面对LLM逐渐膨胀的参数规模,没有H100的开发者和研究人员们想出了很多弥补方法,「量化」技术就是其中的一种。这篇可视化指南用各种图解,将「量化」的基本概念和分支方法进行了全方位总结。
Meta、UC伯克利、NYU共同提出元奖励语言模型,给「超级对齐」指条明路:让AI自己当裁判,自我改进对齐,效果秒杀自我奖励模型。
音视频大语言模型在处理视频内容时,往往未能充分发挥语音的作用。video-SALMONN模型通过三部分创新:音视频编码和时间对齐、多分辨率因果Q-Former、多样性损失函数和混合未配对音视频数据训练。该模型不仅在单一模态任务上表现优异,更在视听联合任务中展现了卓越的性能,证明了其全面性和准确性。
Meta又双叒开源了!继去年初代SAM掀翻CV圈之后,SAM 2也完成了终极进化,不仅能分割图像,最惊艳的是还能分割视频。这下,CV可能就真的不存在了。
大型语言模型(LLM)展现出了令人印象深刻的智能水平。因此,确保其安全性显得至关重要。已有研究提出了各种策略,以使 LLM 与人类伦理道德对齐。然而,当前的先进模型例如 GPT-4 和 LLaMA3-70b-Instruct 仍然容易受到越狱攻击,并被用于恶意用途。
LLaMA3-405B的模型效果已经赶上目前最好的闭源模型GPT-4o和Claude-3.5,这可能是未来大模型开源与闭源的拐点,这里就LLaMA3的模型结构、训练过程与未来影响等方面说说我的看法。
Tenstorrent推AI芯片挑战昂贵HBM,追求成本效益。
7月27日,与ICLR(国际学习表示会议)、NeurIPS(神经信息处理系统会议)并称三大机器学习顶级会议的ICML(国际机器学习大会),在奥地利维也纳会展中心落下帷幕。
随着人工智能(AI)技术的迅猛发展,特别是大语言模型(LLMs)如 GPT-4 和视觉语言模型(VLMs)如 CLIP 和 DALL-E,这些模型在多个技术领域取得了显著的进展。
只用1890美元、3700 万张图像,就能训练一个还不错的扩散模型。
适逢Llama 3.1模型刚刚发布,英伟达就发表了一篇技术博客,手把手教你如何好好利用这个强大的开源模型,为领域模型或RAG系统的微调生成合成数据。
在Meta的Llama 3.1训练过程中,其运行的1.6万个GPU训练集群每3小时就会出现一次故障,意外故障中的半数都是由英伟达H100 GPU和HBM3内存故障造成的。
19秒破解几何难题,谷歌AI夺得IMO银牌在业界掀起了巨震。就连菲尔兹奖得主陶哲轩,前IMO美国队负责人罗博深都对此大加赞赏。更有AI大佬高调预测,若谷歌继续加码研究,应该可以造出一个「AI陶哲轩」。
用扩散模型搞社交信息推荐,怎么解决数据噪声难题?现有的一些自监督学习方法效果还是有限。
前苹果设计师 Jason Yuan 打造的一款 AI 聊天应用——Dot,近期在App store 中上线。
自回归训练方式已经成为了大语言模型(LLMs)训练的标准模式, 今天介绍一篇来自阿联酋世界第一所人工智能大学MBZUAI的VILA实验室和CMU计算机系合作的论文,题为《FBI-LLM: Scaling Up Fully Binarized LLMs from Scratch via Autoregressive Distillation》
Meta 发布 Llama 3.1 405B,开放权重大模型的性能表现首次与业内顶级封闭大模型比肩,AI 行业似乎正走向一个关键的分叉点。扎克伯格亲自撰文,坚定表明「开源 AI 即未来」,再次将开源与封闭的争论推向舞台中央。
在QuantaMagazine的这篇播客中,主持人采访了华盛顿大学计算机教授Yejin Choi。两人谈到十分有趣的话题,比如AI是否必须获得具身和情感,才能发展出像人类一样的常识?
最近,Latent Space发布的播客节目中请来了Meta的AI科学家Thomas Scialom。他在节目中揭秘了Llama 3.1的一些研发思路,并透露了后续Llama 4的更新方向。
最近两款大型 AI 模型相继发布。
随着大型语言模型(LLMs)的进步,多模态大型语言模型(MLLMs)迅速发展。它们使用预训练的视觉编码器处理图像,并将图像与文本信息一同作为 Token 嵌入输入至 LLMs,从而扩展了模型处理图像输入的对话能力。这种能力的提升为自动驾驶和医疗助手等多种潜在应用领域带来了可能性。
开源多模态大模型或将开始腾飞。
用来运行 Llama 3 405B 优势明显。
KAN 在符号表示中领先,但 MLP 仍是多面手。
搜索引擎市场老二微软Bing引进AI搜索功能,集传统搜索结果和AI搜索结果于一体,这次,能撼动老大哥谷歌搜索的江山吗?