
生图效果媲美GPT-4o,一键搞定各类视觉生成任务丨港科广&字节全新框架
生图效果媲美GPT-4o,一键搞定各类视觉生成任务丨港科广&字节全新框架图像生成、视频创作、照片精修需要找不同的模型完成也太太太太太麻烦了。 有没有这样一个“AI创作大师”,你只需要用一句话描述脑海中的灵感,它就能自动为你搭建流程、选择工具、反复修改,最终交付高质量的视觉作品呢?
图像生成、视频创作、照片精修需要找不同的模型完成也太太太太太麻烦了。 有没有这样一个“AI创作大师”,你只需要用一句话描述脑海中的灵感,它就能自动为你搭建流程、选择工具、反复修改,最终交付高质量的视觉作品呢?
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
RNN太老,Transformer太慢?谷歌掀翻Transformer王座,用「注意力偏向+保留门」取代传统遗忘机制,重新定义了AI架构设计。全新模型Moneta、Yaad、Memora,在多个任务上全面超越Transformer。这一次,谷歌不是调参,而是换脑!
本文介绍的工作由中国人民大学高瓴人工智能学院李崇轩、文继荣教授团队与蚂蚁集团共同完成。朱峰琪、王榕甄、聂燊是中国人民大学高瓴人工智能学院的博士生,导师为李崇轩副教授。
真是屋漏偏逢连夜雨! 就在特斯拉创下单日最大跌幅,市值蒸发1500亿美元(折合人民币约10784亿元)之际,马斯克又痛失一位悍将——
在文本推理领域,以GPT-o1、DeepSeek-R1为代表的 “慢思考” 模型凭借显式反思机制,在数学和科学任务上展现出远超 “快思考” 模型(如 GPT-4o)的优势。
AI顶流Claude升级了,程序员看了都沉默:不仅能写代码能力更强了,还能连续干活7小时不出大差错!AGI真要来了?这背后到底发生了什么?现在,还有机会加入AI行业吗?如今做哪些准备,才能在未来立足?
逻辑推理是人类智能的核心能力,也是多模态大语言模型 (MLLMs) 的关键能力。随着DeepSeek-R1等具备强大推理能力的LLM的出现,研究人员开始探索如何将推理能力引入多模态大模型(MLLMs)
与OpenAI分道扬镳后,Figure 02开启日夜进厂打工模式。
能够完成多步信息检索任务,涵盖多轮推理与连续动作执行的智能体来了。通义实验室推出WebWalker(ACL2025)续作自主信息检索智能体WebDancer。
苹果最新研究揭示大推理模型(LRM)在高复杂度任务中普遍「推理崩溃」:思考路径虽长,却常在关键时刻放弃。即便给予明确算法提示,模型亦无法稳定执行,暴露推理机制的局限性。
我们拆解AI Agent的运作流程,包括感知层、决策层和执行层。
AI Agent又解锁了一个领域!清华大学牵头,与西北工业大学以及上海AI lab等机构推出了电镜领域的AI agent——AutoMat。
肾病防治迈向智能化、精准化:北大第一医院发布“肾说”大模型,医疗科技的不断创新,正在为患者提供更加高效、便捷的医疗服务。
AI模型用于工业异常检测,再次取得新SOTA!
这篇文章不只是关于 Coding Agent 的使用体验,也包括对相关关键技术,例如语言搜索、MCP 的探索和理解。Coding Agent 结合 MCP 是一种值得探索的新的自动化方式。
Nature never undertakes any change unless her interests are served by an increase in entropy. 自然界的任何变化,唯有在熵增符合其利益时方会发生——Max Planck
您有没有发现,现在市面上的AI角色扮演的Agent总有种「隔靴搔痒」的感觉?用户和AI聊天时,AI虽然能说出符合角色设定的话,但总觉得缺了点什么——就像演员在背台词,而不是真的在思考。感觉很假,也很奇怪。
近年来,AI的迅猛发展也使科研范式发生了根本性变革。
如果你面前有两个AI助手:一个能力超强却总爱“离经叛道”,另一个规规矩矩却经常“答非所问”,你会怎么选?
近期arxiv最热门论文,Qwen&清华LeapLab团队最新成果: 在强化学习训练大模型推理能力时,仅仅20%的高熵token就能撑起整个训练效果,甚至比用全部token训练还要好。
科学家用AI重构《死海古卷》时间线,震撼圈内!最新研究显示,《但以理书》《传道书》部分古卷实际成书更早,甚至揭示了圣经作者线索。AI模型Enoch结合碳14定年与笔迹分析,首创AI定年方法,大幅超越传统古文字学。
大模型推理,无疑是当下最受热议的科技话题之一。
大型语言模型 (LLM) 的发展日新月异,但实时「内化」与时俱进的知识仍然是一项挑战。如何让模型在面对复杂的知识密集型问题时,能够自主决策获取外部知识的策略?
清华与蚂蚁联合开源AReaL-boba²,实现全异步强化学习训练系统,有效解耦模型生成与训练流程,GPU利用率大幅提升。14B模型在多个代码基准测试中达到SOTA,性能接近235B模型。异步RL训练上大分!
随着大型语言模型(LLM)技术的不断发展,Chain-of-Thought(CoT) 等推理增强方法被提出,以期提升模型在数学题解、逻辑问答等复杂任务中的表现,并通过引导模型逐步思考,有效提高了模型准确率。
1、深度研究实际场景 2、深度研究是什么,它用了什么能力? 3、在深度研究上,AI 为啥比人强这么多? 4、哪些问题,值得用深度研究方式来做? 5、怎样用好深度研究,保持结果的稳定性? 6、各类深度研究产品的特点以及使用技巧?
本研究由广州趣丸科技团队完成,团队长期致力于 AI 驱动的虚拟人生成与交互技术,相关成果已应用于游戏、影视及社交场景
数学家出手反击AI!对AlphaEvolve在“集合和差问题”上的成果进一步改进。
智能体技术日益发展,但现有的许多通用智能体仍然高度依赖于人工预定义好的工具库和工作流,这极大限制了其创造力、可扩展性与泛化能力。