摘要
本发明属于风电机故障诊断技术领域。提出了一种基于机理数据融合的风电机故障诊断方法及系统,将特征序列、时序特征、残差以及差分残差进行拼接融合,得到融合特征向量;将融合特征向量线性映射至高维隐空间,将高维隐空间中的特征进行特征间的矩阵乘法运算,得到特征之间的相似度分布,经归一化后得到自适应邻接矩阵;将自适应邻接矩阵与高维隐空间中的特征再次进行特征间的矩阵乘法运算,经归一化后得到耦合特征矩阵,将自适应邻接矩阵与耦合特征矩阵相加后得到交互特征向量,根据交互特征向量得到风电机故障诊断结果。本发明实现了不同特征重要性的自适应建模,减少了因环境噪声与工况波动带来的误判。