基于多种时序模型融合的半导体工厂能源数据预测方法
# 热门搜索 #
大模型
人工智能
openai
融资
chatGPT
AITNT公众号
AITNT APP
AITNT交流群
搜索
首页
AI资讯
AI技术研报
AI监管政策
AI产品测评
AI商业项目
AI产品热榜
AI专利库
寻求报道
基于多种时序模型融合的半导体工厂能源数据预测方法
申请号:
CN202511467897
申请日期:
2025-10-15
公开号:
CN120952267A
公开日期:
2025-11-14
类型:
发明专利
摘要
本发明公开了一种基于多种时序模型融合的半导体工厂能源数据预测方法,方法包括对能源数据进行数据清洗及特征定义;基于处理后的能源数据的数据特性进行模型选择并训练多个单一模型;基于场景判别指标选择合适的单一模型,其中场景判别指标包括波动幅度和季节周期;波动幅度通过数据标准差或移动窗口内的极差计算得到,季节周期通过自相关函数检测周期强度获得;对所选模型的预测结果进行模型融合;评估融合模型并基于评估结果进行能源预测。本发明能够自适应地选择最优模型,保证能源预测精度和稳定性。
技术关键词
数据预测方法
深度学习模型
能源
数据处理模块
模型训练模块
数据预测系统
时域特征
频域特征
指标
场景
时序特征
半导体
设备运行状态
模型预测值
定义
存储器
周期性