摘要
本申请公开了一种基于大数据分析的输电线路隐患预测方法及装置,涉及电网安全技术领域。本申请的主要技术方案为:采集与输电线路运行相关联的多源异构数据,再对这些数据进行预处理,并且出于符合小波变换和卷积神经网络的数据处理范畴,得到:将不同数据源的时序数据转换为统一时间尺度的时序结构的第一数据;将不同数据源的非结构数据中图像和文本进行预标注的第二数据;运用小波变换、卷积神经网络的协作以对第一数据和第二数据进行处理,以提取与输电线隐患相关的结构化时序特征、非结构化图像特征和文本特征;最后将这些特征数据输入至贝叶斯网络的预置隐患预测模型处理,输出不同预置隐患的存在概率,以最终得到输电线路隐患的预测结果。