基于神经网络的岩土体变形识别方法、装置及电子设备

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
基于神经网络的岩土体变形识别方法、装置及电子设备
申请号:CN202511404705
申请日期:2025-09-29
公开号:CN120873992A
公开日期:2025-10-31
类型:发明专利
摘要
本发明提供了一种基于神经网络的岩土体变形识别方法、装置及电子设备,涉及人工智能技术领域,通过预先构建多源岩土融合张量,实现物理一致性和数据真实性的双重保障,并针对岩土体的监测数据对应的环境因子数据进行对应多源岩土融合张量匹配,实现具备物理力学一致性与现场数据真实性的特征识别。且,通过提取数据的分支特征、应变敏感特征和多尺度时空特征,形成覆盖力学本质、实时响应、时空演化的完整特征体系,对岩土体变形本质全面捕捉。并基于自注意力机制对上述特征协同分类,能够在适应不同地质条件的变形识别场景下精准确定变形模式,实现兼具物理一致性与数据驱动优势的岩土体变形分析。
技术关键词
岩土体变形 神经网络模型 注意力机制 分支 混合损失函数 识别方法 因子 多尺度 物理 模式 电子设备 矩阵 离散方式 特征提取模块 人工智能技术 训练样本集 数据处理模块 数值