摘要
本发明涉及机械传动技术领域,尤其涉及齿轮多体动力学约束的强化学习补偿方法及系统,包括:建立包含轴承刚度与齿轮啮合力的多体动力学数字孪生模型;构建基于非线性流形映射的自适应奖励函数,根据角度偏差阈值将系统状态空间划分为小偏差域和大偏差域;基于深度确定性策略梯度算法对多体动力学模型进行训练,获取补偿策略;将获取的补偿策略应用于多体动力学模型,通过静态补偿与动态补偿的自适应融合,得到最优补偿信号,提高了强化学习算法在复杂非线性系统中的训练效率,增强了系统对工况变化的适应能力,显著降低了齿轮系统振动,提高了角度控制精度,延长了设备使用寿命。