摘要
本发明公开了一种基于脉冲神经网络的多标签图片分类方法,该方法首先设计一个更贴合脉冲神经元平均发放特性的梯度回传方式RateBP,用于降低脉冲神经网络在训练时的显存占用;利用基于RateBP的脉冲神经元,设计一个包含Encoder编码器和Decoder解码器两部分的高性能Neck网络;基于设计的Neck网络,结合高性能的Backbone主干网络,搭建一个二阶段的脉冲神经网络,用于多标签图片分类;设计一个高性能的损失函数,用以训练多标签图片分类模型;最终得到一个适用于多标签图片分类领域,高性能的多标签图片分类的脉冲神经网络模型。此外,本发明是脉冲神经网络在多标签图片分类领域的首次探索,扩展了脉冲神经网络的应用领域,也进而实现了图片多标签检测。