摘要
本发明提供一种面向大语言模型的结构化知识注入方法及系统,涉及人工智能技术领域。所述方法包括:利用命名实体识别技术对问题中的实体进行识别标记;在知识图谱上链接识别出的实体;检索两两实体之间的可能路径上的实体及其关系,构建知识子图;根据实体对与问题的相关性,对知识子图上的实体对进行打分;利用图神经网络对知识子图进行建模,并利用打分的分数引导图神经网络消除噪音;基于知识子图选取图谱嵌入化知识,并映射到大语言模型的参数化知识空间,得到对齐知识;将对齐知识注入大语言模型的前馈神经网络参数中进行知识性问答。本发明能够提高大语言模型对知识检索以及知识利用的能力。