摘要
本发明公开了基于孤立森林的CNN‑BiLSTM的负荷预测方法,步骤是:步骤1、采集短期负荷数据;步骤2、处理异常数据;步骤3、进行归一化,再划分为训练集T1和测试集T2;步骤4、搭建CNN‑BiLSTM负荷预测模型,并完成训练;步骤5、残差纠正及误差评估,得到基于孤立森林的CNN‑BiLSTM的负荷预测结果。本发明属于电力系统运行和调度技术领域,将历史的结合天气、日期、工作日类型等因素作为输入特征,采用孤立森林对异常点进行捕捉和处理,然后采用CNN‑BiLSTM负荷预测模型进行预测,得到实际负荷预测曲线,明显提高了短期电力负荷预测的精度。